3 Yr. Degree/4 Yr. Honours 1st Semester Examination, 2023 (CCFUP)

Subject: Physics

Course: PHYS1021 (MINOR)

(Mathematical Physics-I)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

Symbols have their usual meaning.

Group-A

1. Answer any five questions from the following:

 $2 \times 5 = 10$

- (a) What do you mean by limit of a function? Find the value of $\lim_{x\to 0} \frac{\tan x}{x}$.
- (b) For a function $f(x) = \frac{(x+1)(x^2-25)}{(x-1)(5x^2+30+45)}$, list all values of x at which f(x) is not defined.
- (c) What is Wronskian of a differential equation? Show that if two solutions are linearly independent Wronskian vanishes.
- (d) Find the projection of the vector $\vec{A} = 3\hat{\imath} + 3\hat{\jmath} \hat{k}$ on the vector $\vec{B} = 2\hat{\imath} + 3\hat{\jmath} 6\hat{k}$.
- (e) If $\phi(x, y, z) = 3x^2y y^2z + xz^2$, find $\overrightarrow{\nabla}\phi$ at the point (3, 1, -1).
- Determine the constant α so that the vector $\vec{A} = (2x + 3y)\hat{\imath} + (y 2z)\hat{\jmath} + (3x + 2\alpha z)\hat{k}$ is solenoidal.
- (g) Evaluate $\iint_S \vec{F} \cdot \hat{n} \, dS$, where $\vec{F} = 4xz\hat{\imath} y^2\hat{\jmath} + yz\hat{k}$ and S is the surface bounded by a unit cube.
- (b) Solve the differential equation $\frac{dy}{dx} + 2y = 3e^x$.

Group-B

Answer any two questions from the following:

 $5 \times 2 = 10$

- 2. State the Stokes' theorem in words. Verify Stokes' theorem for $\vec{A} = (2x y)\hat{\imath} yz^2\hat{\jmath} y^2z\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.
- 3. A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$, where t is the time.
 - (a) Determine its acceleration at any time.
 - (b) Find the magnitudes of the velocity and acceleration at t = 0.

2 + 3

32509

Please Turn Over

(2)

PHYS1021

- 4. Obtain the scale factors for the cylindrical constants. Show that the cylindrical coordinates are orthogonal coordinate system.
- 5. State the existence and uniqueness theorem for initial value problems of ordinary differential equations. A tank initially contains 50 gallon of water. A salt solution containing 2 kg of salt per gallon water is poured into the tank at a rate of 3 gallon/minute. The mixture is stirred and is drained out the tank at the same rate. Find the initial-value problem that describes the amount Q of salt in the tank at any time.

Group-C

Answer any two questions from the following:

 $10 \times 2 = 20$

- **6.** Define the irrotational vector. Find constants a, b, c so that a vector $\vec{F} = (x + 2y + az)\hat{\imath} + az$ $(bx-3y-2z)\hat{j}+(4x+cy+2z)\hat{k}$ is irrotational. Show that $\nabla^2(r^n)=n(n+1)r^{n-2}$, where n is a constant.
- 7. What do you mean by linear differential equations? What is complementary function and particular integral? Solve the differential equation $\frac{d^2y}{dx^2} - 4y = x \sin hx$. 2+2+6
- **8.** What do you mean by vector field? A vector field \vec{F} is given by $\vec{F} = xy^2\hat{\imath} + 2\hat{\jmath} + x\hat{k}$ and L is a path parameterized by x = ct, y = c/t, z = d for the range $1 \le t \le 2$. Evaluate the three integrals
 - (a) $\int_L \vec{F} dt$
 - (b) $\int_L \vec{F} dy$

1+3+3+3 (c) $\int_{I} \vec{F} \cdot d\vec{r}$

9. Plot the function $y = x^2 + x - 1$ for |x| < 5. What is an exart differential equation? Show that the equation function $u(x,t) = f(x+ct) + \phi(x-ct)$ satisfies the differential differential 3+2+5 $\frac{\partial^2 u}{\partial x^2} = \frac{1}{C^2} \frac{\partial^2 u}{\partial t^2}.$